Hydrogen Transfer and C-H Activation in a Dihydroiridium Amido-alkene Complex

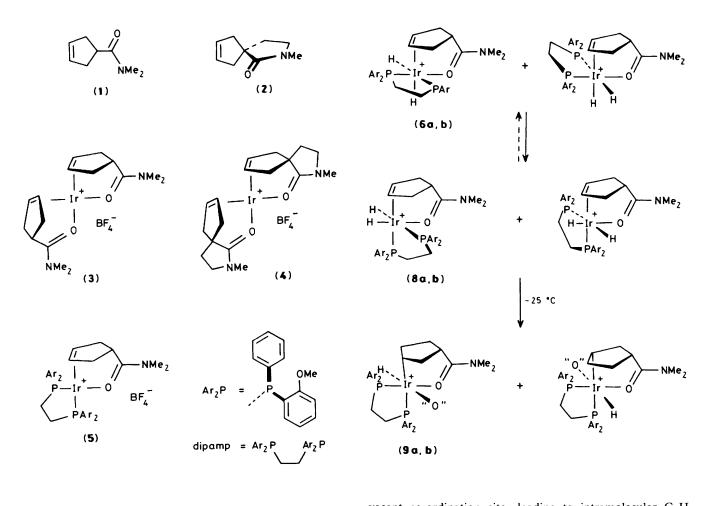
John M. Brown* and Peter J. Maddox

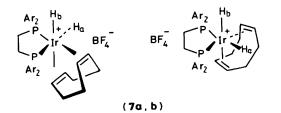
Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY, U.K.

Dihydrogen addition to the alkene complex (5) is regiospecific and stereoselective; the dihydride mixture is converted into alkyl hydrides and ultimately into a chelation-controlled C–H insertion product (10).

All attempts to characterise the putative dihydride formed in the rate-determining step of asymmetric homogenous hydrogenation have failed.¹ Special structural features in the enamide are thought to make hydride migration unusually easy so that the first observed transient is an alkylrhodium hydride.² We turned to modified alkene complexes in order to delineate this initial step.

Preliminary experiments showed that the unsaturated amides $(1)^3$ and $(2)^+$ reacted with the dipamp-rhodium methanol solvate⁴ to give stable spectroscopically characterised 1:1 complexes, homologous with rhodium enamides. Slow hydrogenation with catalytic turnover was observed at 25 °C. This encouraged a diversion of effort to iridium chemistry, and complexes (3) and (4) were prepared according to previously defined procedures.⁵ The former, but not the latter, reacted with dipamp ($-70 \,^{\circ}\text{C} \rightarrow -10 \,^{\circ}\text{C}$, 30 min) by specific displacement of one mole of amide (1). Complex (5) which resulted was treated with H₂ to discharge the red colour $(-70 \,^{\circ}\text{C}) \le 1 \,\text{min}$ and ¹H or ³¹P n.m.r. spectra were recorded immediately. These revealed two dihydrides (6a) and (6b) in the ratio 4:1, with Ir-H chemical shifts in the range of -8 to -10 p.p.m. (Table 1). Their structural assignment, with one hydride trans to P and one trans to CH=CH, was confirmed by preparation of the related mixture (7a) + (7b), for which close precedents exist.⁶ The addition of H₂ is completely regiospecific, and finds parallels in the work of Johnson and Eisenberg.⁷ Following their interpretation, the regiochemical preference is ordained by overlap of $\sigma^*(H_2)$ with $\pi^*(CH=CH)$ as it interacts with the metal d_{π} -orbital. This in turn raises an interesting analogy with the H₂ addition step in asymmetric hydrogenation, since previous work had considered only the dihydride formed by H₂ addition along the P–Rh–O vector.^{1.8} We shall return to a more detailed discussion of this point elsewhere.


On warming the sample of (6) to *ca.* $-45 \,^{\circ}$ C, partial rearrangement to the isomeric dihydrides (8a) and (8b) occurred, one of the pair (configuration unspecified) being very strongly predominant ($\geq 95\%$). This may be the thermodynamically preferred geometry, as >50% isomerisation occurs, but the point is not conclusively established since a further rearrangement occurs in competition, giving rise to alkyl hydrides (9a) and (9b) by hydride migration. They become the dominant components on warming to $-10 \,^{\circ}$ C. The observation constitutes the first transformation of a metal-alkene dihydride into an alkylmetal hydride, although both types of intermediates had been observed separately; the related monohydride to alkyl transformation is well precedented.⁹


Around 0 °C a further rearrangement occurs indicated *inter* alia by loss of one N–Me group in the ¹H n.m.r. spectrum and replacement by a diastereotopic N–CH₂. At 25 °C this is the major component (>90%) and its structure (**10**) was determined by n.m.r. spectroscopy, using 2-D COSY and nuclear Overhauser effect (n.O.e) techniques as previously described.¹⁰ The results are delineated in Figure 1, and indicate several features in common with alkyl hydrides derived from iridium enamides.¹⁰ Reductive elimination in (**9**) creates a

[†] Compound (2) was prepared in a similar manner by successive treatment of *N*-methylpyrrolidone with LiNPri₂ (-70 to 0°C), *cis*-1,4-dichlorobut-2-ene (-70 to 0°C), and LiNPri₂ (-70 to 25 °C, 16 h). Compounds (2), (3), and (4) were obtained analytically pure and were spectroscopically characterised.

Table 1. N.m.r. spectroscopic parameters of hydride complexes

Complex	¹ H N.m.r. (Ir–H) δ; <i>J</i> (HP)/Hz; <i>T</i> /°C	³¹ P N.m.r. δ/p.p.m.; J (PP)/Hz	Temp. range observed/°C
(6a) H _a	-9.20; 117, 15.7; -70	Br.	-70 to -25
Η _b	-8.73(br.)		
(6b) H _a	-9.48; 120, 15; -43	Br.	-70 to -25
H _b	-8.63;21,21		
(7a) H _a	-10.1;93,16;-10	Br.	
H_{b}	-13.7; 18, 18	Br.	
(7b) H _a	-9.8;90,17,-10	Br.	
Hb	-13.3; 17, 17		
(8a) H _a	-29.95; 15, 21; -28	33.2, 45.6, br.	-45 to -10
H _b	-7.88;100,18		
(8b) H _a	-29.78; br.; -10		-10
H _b	-7.88;100,18		
(9a)	-28.66; 19, 10; -25	29.5, 37.5; 17	-45 to -10
(9b)	-28.35; 19, 11; -25	28.3, 35.5; 17.5	-45 to -10
(10)	-28.45; 19, 13; 25	27.4, 35.3; 12	≥0

vacant co-ordination site, leading to intramolecular C-H activation facilitated by the carbonyl group. When D_2 addition to complex (5) is effected at ambient temperature, the initial product is $\geq 80\%$ an iridium hydride deuteriated in the cyclopentane ring. Shaking under D_2 at 20 °C causes immediate H-D exchange, revealed both by the halving of Ir-H intensity and splitting of the O-CH₃ signal at 3.16 p.p.m.¹⁰ When the solution was kept under D_2 for 24 h followed by chromatographic isolation, the recovered cyclopentane (11) had the indicated isotope distribution. Exchange occurs

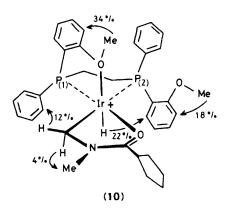
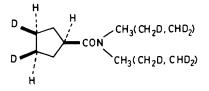
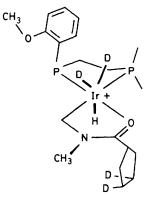




Figure 1. N.O.e.s for (10).

through ligand dissociation of OCH₃, D_2 addition to the metal, and internal rearrangement in the putative intermediate (12) before loss of HD.¹¹

Selective activation of C–H α to an amide nitrogen is novel and indicates participation of the carbonyl oxygen which remains bound to the iridium. It is reminiscent of the directed α -lithiation of amides,¹² such that we expect further parallels between C–H activation by low-valent transition metals, and by organolithium reagents.

Future work will consider chiral analogues of amide (1), further to elucidate the origins of enantioselection in the H_2 addition step.

We thank S.E.R.C. for a studentship (to P. J. M.) and Johnson-Matthey for a loan of previous metal salts.

Received, 9th April 1987; Com. 466

References

- (a) Reviewed by J. M. Brown and P. A. Chaloner in 'Homogeneous Catalysis with Metal-Phosphine Complexes,' ed. L. H. Pignolet, Plenum Press, New York, 1984, ch. 4, p. 137; (b) J. Halpern and C. R. Landis, J. Am. Chem. Soc., 1987, 109, 1746.
- 2 A. S. C. Chan and J. Halpern, J. Am. Chem. Soc., 1980, 102, 838;
 J. M. Brown and P. A. Chaloner, J. Chem. Soc., Chem. Commun., 1980, 344.
- J. P. Deprés and A. E. Greene, J. Org. Chem., 1984, 49, 928;
 K. C. Murdock and R. B. Ongier, *ibid.*, 1962, 27, 2395.
- 4 J. M. Brown and P. A. Chaloner, J. Am. Chem. Soc., 1980, 102, 3040.
- 5 N. W. Alcock, J. M. Brown, A. E. Derome, and A. R. Lucy, J. Chem. Soc., Chem. Commun., 1985, 575.
- 6 R. H. Crabtree, H. Felkin, T. Fillebeen-Khan, and G. E. Morris, J. Organomet. Chem., 1979, 168, 183.
- 7 C. E. Johnson and R. Eisenberg, J. Am. Chem. Soc., 1985, 107, 3148.
- 8 Excepting P. A. MacNeil, N. K. Roberts, and B. Bosnich, J. Am. Chem. Soc., 1981, 103, 2273.
- 9 For example, N. M. Doherty and J. E. Bercaw, J. Am. Chem. Soc., 1985, **107**, 2670 and refs. therein.
- 10 J. M. Brown and P. J. Maddox, J. Chem. Soc., Chem. Commun., preceeding communication.
- 11 R. H. Crabtree, M. Lavin, and L. Bonnevoit, J. Am. Chem. Soc., 1986, 108, 4032.
- 12 P. Beak and D. B. Reitz, Chem. Rev., 1978, 78, 275.